翻訳と辞書
Words near each other
・ Dede Yusuf
・ Dedeaux Field
・ Dedebağı
・ Dedebit Credit and Saving Institution SC
・ Dedebit F.C.
・ Dedeckera
・ Dededo
・ Dedee
・ DeDee Nathan
・ Dedee Pfeiffer
・ Dedegül, Ardahan
・ Dedeh Erawati
・ Dedekind
・ Dedekind cut
・ Dedekind domain
Dedekind eta function
・ Dedekind function
・ Dedekind group
・ Dedekind number
・ Dedekind psi function
・ Dedekind sum
・ Dedekind zeta function
・ Dedekind-infinite set
・ Dedekind–Hasse norm
・ Dedekind–MacNeille completion
・ Dedeköy
・ Dedeköy, Hamamözü
・ Dedeköy, Koçarlı
・ Dedekılıcı, Göle
・ Dedeler


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dedekind eta function : ウィキペディア英語版
Dedekind eta function

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive.
==Definition==
For any such complex number τ, let ''q'' = exp(2πiτ), and define the eta function by,
:\eta(\tau) = e^} \prod_^ (1-q^) .
The notation q \equiv e^\, is now standard in number theory, though many older books use ''q'' for the nome e^\,. Its 24th power gives,
:\Delta=(2\pi)^\eta^(\tau)
where Δ is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice.
The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it.
The eta function satisfies the functional equations〔}\,|journal=Mathematika|year=1954|volume=1|page=4|doi=10.1112/S0025579300000462}}〕
:\eta(\tau+1) =e^}\eta(\tau),\,
:\eta(-\tfrac) = \sqrt \eta(\tau).\,
More generally, suppose ''a'', ''b'', ''c'', ''d'' are integers with ''ad'' − ''bc'' = 1, so that
:\tau\mapsto\frac
is a transformation belonging to the modular group. We may assume that either ''c'' > 0, or ''c'' = 0 and ''d'' = 1. Then
:\eta \left( \frac \right) =
\epsilon (a,b,c,d) (c\tau+d)^} \eta(\tau),
where
:\epsilon (a,b,c,d)=e^}\quad(c=0,d=1);
:\epsilon (a,b,c,d)=e^\pi (- s(d,c)
-\frac )}\quad(c>0).
Here s(h,k)\, is the Dedekind sum
:s(h,k)=\sum_^ \frac
\left( \frac - \left\lfloor \frac \right\rfloor -\frac \right).
Because of these functional equations the eta function is a modular form of weight 1/2 and level 1 for a certain character of order 24 of the metaplectic double cover of the modular group, and can be used to define other modular forms. In particular the modular discriminant of Weierstrass can be defined as
:\Delta(\tau) = (2 \pi)^ \eta(\tau)^\,
and is a modular form of weight 12. (Some authors omit the factor of (2π)12, so that the series expansion has integral coefficients).
The Jacobi triple product implies that the eta is (up to a factor) a Jacobi theta function for special values of the arguments:
:\eta(\tau) = \sum_^\infty \chi(n) \exp(\tfrac \pi i n^2 \tau),
where \chi(n) is the Dirichlet character modulo 12 with \chi(\pm1) = 1,
\chi(\pm 5)=-1. Explicitly,
:\eta(\tau) = e^}\vartheta_3(\tfrac, e^).
The Euler function
:\phi(q) = \prod_^ \left(1-q^n\right),
related to \eta \, by \phi(q)= q^ \eta(\tau)\,, has a power series
by the Euler identity:
:\phi(q)=\sum_^\infty (-1)^n q^.
Because the eta function is easy to compute numerically from either power series, it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms.
The picture on this page shows the modulus of the Euler function: the additional factor of q^ between this and eta makes almost no visual difference whatsoever (it only introduces a tiny pinprick at the origin). Thus, this picture can be taken as a picture of eta as a function of ''q''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dedekind eta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.